Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(38): e202204002, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37084044

RESUMO

A thermoresponsive structural change based on a disilane-bridged bis(pyridine) ligand and CuI is reported. Single-crystal X-ray analysis revealed that there are two polymorphs in the Cu(I) complex: octanuclear copper(I) complex at 20 °C and 1D staircase copper(I) polymer complex at -173 °C. The formation of these polymorphs is due to the flexibility of the ligand. Cu-I bond formation is observed upon cooling the sample from -10 °C to -170 °C. The temperature-induced phase transition progression was clarified by DSC, VT-PXRD, and VT-photoluminescence measurements and indicated a reversible temperature-controlled crystal-to-crystal phase transition. Observation on a VT-stage using a high-speed camera showed crystal cracking during single-crystal to single-crystal transitions between these polymorphic forms.


Assuntos
Cobre , Piridinas , Temperatura , Cobre/química , Cristalografia por Raios X , Ligantes
2.
Acta Crystallogr A Found Adv ; 74(Pt 6): 681-698, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30378579

RESUMO

It is observed that radial streak patterns of double Bragg scattering appear in the small-angle X-ray scattering from highly oriented pyrolytic graphite (HOPG). The intensity profile of double Bragg scattering from an HOPG sample is calculated theoretically. Assuming that the c axes of the graphite crystallites in the HOPG sample are distributed around an orientation vector and their distribution function has a Gaussian form, it is found that the intensity profile of double Bragg scattering is expressed by a double Gaussian function of the scattering angle and the azimuthal angle of the streak. The calculated intensity profile is compared with the experimental one. The method developed in this article can be used to estimate the orientational distribution of crystallites in uniaxial polycrystalline materials.

3.
J Phys Condens Matter ; 20(11): 114101, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-21694194

RESUMO

There are two ways to proceed with nanoscience: so-called top-down and bottom-up methods. Usually, the former methods are thought of as in the province of physicists and the latter in that of chemists. However, this is not entirely true because the physics of disordered matter, especially liquid metals, is well-developed bottom-up science and it has indeed provided nanoscience with basic ideas and theoretical tools such as ab initio molecular dynamics (MD) simulations. Here we wish to present experimental studies on such phenomena that originate from quantum mechanical properties and subsequently lead to classical non-equilibrium processes: among these are slow dynamics due to metal-nonmetal transitions in liquids, and wetting and dewetting transitions of liquid semiconductors. Since all these phenomena are related to a spatiotemporal range far wider than that treated by the present ab initio MD simulations, it is desirable that new progress in theoretical physics be stimulated, resulting in further developments in nanoscience.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...